FTC Classwork

1.

Traffic flow is defined as the rate at which cars pass through an intersection, measured in cars per minute. The traffic flow at a particular intersection is modeled by the function F defined by

$$F(t) = 82 + 4\sin\left(\frac{t}{2}\right)$$
 for $0 \le t \le 30$,

where F(t) is measured in cars per minute and t is measured in minutes.

- (a) To the nearest whole number, how many cars pass through the intersection over the 30-minute period?
- (b) Is the traffic flow increasing or decreasing at t = 7? Give a reason for your answer.
- (c) What is the average value of the traffic flow over the time interval 10 ≤ t ≤ 15? Indicate units of measure.
- (d) What is the average rate of change of the traffic flow over the time interval 10 ≤ t ≤ 15? Indicate units of measure.

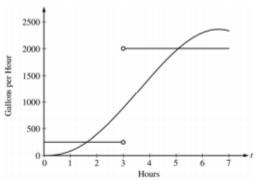
2.

The rate at which people enter an amusement park on a given day is modeled by the function E defined by

$$E(t) = \frac{15600}{\left(t^2 - 24t + 160\right)}.$$

The rate at which people leave the same amusement park on the same day is modeled by the function L defined by

$$L(t) = \frac{9890}{\left(t^2 - 38t + 370\right)}.$$


Both E(t) and L(t) are measured in people per hour and time t is measured in hours after midnight. These functions are valid for $9 \le t \le 23$, the hours during which the park is open. At time t = 9, there are no people in the park.

- (a) How many people have entered the park by 5:00 P.M. (t = 17)? Round answer to the nearest whole number.
- (b) The price of admission to the park is \$15 until 5:00 P.M. (t = 17). After 5:00 P.M., the price of admission to the park is \$11. How many dollars are collected from admissions to the park on the given day? Round your answer to the nearest whole number.
- (c) Let H(t) = ∫₉^t (E(x) L(x)) dx for 9 ≤ t ≤ 23. The value of H(17) to the nearest whole number is 3725.
 Find the value of H'(17) and explain the meaning of H(17) and H'(17) in the context of the park.
- (d) At what time t, for 9 ≤ t ≤ 23, does the model predict that the number of people in the park is a maximum?

The amount of water in a storage tank, in gallons, is modeled by a continuous function on the time interval $0 \le t \le 7$, where t is measured in hours. In this model, rates are given as follows:

- (i) The rate at which water enters the tank is $f(t) = 100t^2 \sin(\sqrt{t})$ gallons per hour for $0 \le t \le 7$.
- (ii) The rate at which water leaves the tank is

$$g(t) = \begin{cases} 250 & \text{for } 0 \le t < 3 \\ 2000 & \text{for } 3 < t \le 7 \end{cases}$$
 gallons per hour.

The graphs of f and g, which intersect at t = 1.617 and t = 5.076, are shown in the figure above. At time t = 0, the amount of water in the tank is 5000 gallons.

- (a) How many gallons of water enter the tank during the time interval 0 ≤ t ≤ 7? Round your answer to the nearest gallon.
- (b) For 0 ≤ t ≤ 7, find the time intervals during which the amount of water in the tank is decreasing. Give a reason for each answer.
- (c) For $0 \le t \le 7$, at what time t is the amount of water in the tank greatest? To the nearest gallon, compute the amount of water at this time. Justify your answer.

4.

Grass clippings are placed in a bin, where they decompose. For $0 \le t \le 30$, the amount of grass clippings remaining in the bin is modeled by $A(t) = 6.687(0.931)^t$, where A(t) is measured in pounds and t is measured in days.

- (a) Find the average rate of change of A(t) over the interval $0 \le t \le 30$. Indicate units of measure.
- (b) Find the value of A'(15). Using correct units, interpret the meaning of the value in the context of the problem.
- (c) Find the time t for which the amount of grass clippings in the bin is equal to the average amount of grass clippings in the bin over the interval 0 ≤ t ≤ 30.
- (d) For t > 30, L(t), the linear approximation to A at t = 30, is a better model for the amount of grass clippings remaining in the bin. Use L(t) to predict the time at which there will be 0.5 pound of grass clippings remaining in the bin. Show the work that leads to your answer.